数据分析的概念以及目的

数据分析也是运营当中的一部分,而且起到非常关键的作用,我们可以通过数据分析可以做出正确的判断。接下来我们就一起来了解一下吧。

数据分析的概念以及目的

数据分析是指用适当的统计分析对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据分析的目的是什么

数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。

在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升?#34892;?#24615;。在企?#36947;?#38754;,数据分析可以帮助我们掌握企业的运营状况,商品的出售情况,用户的特征、产品的粘性、等?#21462;?/p>

数据分析的概念以及目的

数据分析的步骤

1.首先明确分析的思路和目的:

数据分析一定的带着某种业务目的的。它可能是要追踪一个新产品上线之后的用户使用情况;也可能是观察用户在某段时间的留存情况,还有可能是运营某种优惠券是否?#34892;А?/strong>带着一定的目的,确定要从哪几个角度进行分析。然后找到能够说明目的的指标。

比如想要验证运营最近的一批优惠券是否?#34892;А?#25105;们可以从优惠券的领取情况和优惠券的使用情况两个方面分析,而优惠券的领取情况的指标可以细化为领取率;使用情况可细化为:使用率、客单价?#21462;?/p>

2.数据的收集:

在确定了此次数据分析的核心指标后,就要针对数据指标做数据收集。?#34892;?#20225;业的数据准备非常充分,数据仓库、数据集市等早早就建设好。有一些企业在数据分析上比?#19979;?#21518;,那就需要我们自己做前期大量的数据收集工作。比如使用一些自己公司的或者第三方的数据分析工具进行埋点,拿到日志。或者使用数据库中的现有数据,比如订单数据、基础的用户信息等?#21462;?/p>

数据分析的概念以及目的

3.数据处理:

数据提取出来之后,要剔除脏数据(清洗),然后数据转化。在进行最基本的数据汇总、聚合之后,我们就可以拿到比较简单的字段相对丰富的数据宽表。

4.数据分析:

数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成?#34892;?#32467;论的过程。

一般公司所需要观察的数据大致分为如下几类:

商业数据:付费金额,付费用户数,付费率客单价

运营数据:新增用户数,日活、周活、月活(AARRR模型)

产品数据:关键页面的pv、uv(漏斗模型)

用户数据:用户生命周期、用户留存、用户客单价、用户类型(RFM模型…)

商品数据:商品售卖情况,毛利分析….

数据分析的概念以及目的

随着数据的重要性的凸显,越来越多的公司已经认识到数据对于公司的经营是十分重要的。所以绝大部分企业都有专门的BI部门进行初步的数据加工、分析,以周报表的形?#20132;?#24635;给管理层做为日常数据所需以及企业决策使用。

在这里主要介绍两个简单的数据分析模型:AARRR模型

Acquisition(获取)、Activation(活跃)、Retention(留存)、Revenue(收益)、Refer(传播)

1.获取用户(Acquisition)

如何获取用户?线上通过网站通过SEO,SEM,app通过市场首发、ASO?#30830;絞交?#21462;。还有运营活动的H5页面,自媒体?#30830;?#24335;。线下通过地推和传单进行获取用户。

2.提高活跃度(Activation)

来了用户后,通过运营价格优惠、编辑内容?#30830;?#24335;进行提高活跃?#21462;?#25226;内容做多,商品做多,价格做到优惠,但需要控制在成本至上的有生长空间。这样的用户是最有价?#21040;?#34892;活跃。

产品策略上,除了提供运营模块和内容深化。进行产品会员激励机制成长体制进行活跃用户。不仅商品优惠的,VIP等标示的ICON,对于长业务流程,进行流程激励体制,产品策略更具多元化。

数据分析的概念以及目的

3.提高留存率(Retention)

提高活跃度的,有了忠实的用户,就开始慢慢沉淀下来了。运营上,采用内容,相互留言等社区用户?#27493;║CG,摆脱初期的PCG模式。电商通过商?#20998;?#37327;,O2O通过优质服务提高留存。这些都是业务层面的提高留存。

产品模式上,通过会员机制的签到和奖励的机制去提高留存。包括app推送和短信激活方式都是激活用户,提高留存的产品方式。通过日留存率、周留存率、月留存?#23454;?#25351;标监控应用的用户流失情况,并采取相应的手段在用户流失之前,激励这些用户继续使用应用。

4.获取收入(Revenue)

获取收入其实是应用运营最核心的一块。即使是免费应用,也应该有其盈利的模式。

收入来源主要有三种:付费应用、应用内付费、以及广告。付费应用在国内的接受程度很低,包括Google Play Store在中国也只推免费应用。在国内,广告是大部分开发者的收入来源,而应用内付费目前在游戏行业应用比较多。前面所提的提高活跃?#21462;?#25552;高留存率,对获取收入来说,是必需的基础。用户基数大了,收入才有可能上量。

5.自传播(Refer)

数据分析的概念以及目的

以前的运营模型到第四个层次就结束了,但是社交网络的兴起,使得运营增加了一个方面,就是基于社交网络的病毒式传播,这已经成为获取用户的一个新途径。这个方式的成本很低,而且效果有可能非常好;唯一的前提是产品自身要足够好,有很好的口碑。从自传播到再次获取新用户,应用运营形成了一个螺旋式上升的轨道。而那些?#21028;?#30340;应用就很好地利用了这个轨道,不断扩大自己的用户群体。

漏斗模型:

漏斗模型广泛应用于流量监控、产品目标转化等日常数据运营工作中。之所以称为漏斗,就是因为用户(或者流量)集中从某个功能点进入(这是可以根据业务需求来自行设定的),可能会通过产品本身设定的流程完成操作。

按照流程操作的用户进行各个转化层级上的监控,寻找每个层级的可优化点;对没有按照流程操作的用户绘制他们的转化路径,找到可提升用户体验,缩短路径的空间。

运用漏斗模型比较典型的案例就是电商网站的转化,用户在选购商品的时候必然会按照预先设计好的购买流程进行下单,最终完成支付。

需要注意的是:单一的漏斗模型对于分析来说没有任?#25105;?#20041;,我们不能单从一个漏斗模型中评价网站某个关键流程中各步骤的转化率的?#27809;擔?#25152;以必须通过趋势、比较和细分的方法对流程中各步骤的转化率进行分析:

趋势(Trend):从时间轴的变化情况进行分析,适用于对某一流程或其中某个步骤进行改进或优化的效果监控;

数据分析的概念以及目的

比较(Compare):通过比较类似产品或服务间购买或使用流程的转化率,发现某些产品或应用中存在的问题;

细分(Segment):细分来源或不同的客户类型在转化率上的表现,发现一些高质量的来源或客户,通常用于分析网站的广告或推广的效果及ROI。

5.数据展现:

数据可视化-基本的图表

数据可视化是关于数据视觉表?#20013;?#24335;的科学技术研究。其中,这种数据的视觉表?#20013;?#24335;被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。图表是”数据可视化”的常用手段,其中又以基?#23601;?#34920;—-柱状图、折线图、饼图等等—-最为常用。

有人觉得,基?#23601;?#34920;太简单、太原始,不高端,不大气,因此?#38750;?#26356;复杂的图表。但是,越简单的图表,越容易理解,而快速易懂地理解数据,不正是”数据可视化”的最重要目的和最高?#38750;?#21527;?所以,请不要小看这些基?#23601;?#34920;。因为用户最熟悉它们,所以只要是适用的场合,就应该考虑优先使用。

原创文章,作者:金香槟运营,如若转载,请注明出处:http://www.ptffy.club/74368.html

征服者入侵APP下载
每月有5000元闲钱如何理财 安徽25选5 基金配资平台 快乐10分 云南十一选五 北京11选5 p2p理财平台一共多 德国股票指数 北京十一选五 期货配资什么时候出现的 江苏7位数 35选7 怎样分析股票k线图的走势分析 25选5 2019年上证指数半年线是多少目前大盘年线 河北20选5